In Vitro Antibacterial Activity of Some Plant Essential Oils against Four Different Microbial Strains

Author:

Gheorghita DanielaORCID,Robu Alina,Antoniac Aurora,Antoniac IulianORCID,Ditu Lia MaraORCID,Raiciu Anca-Daniela,Tomescu Justinian,Grosu Elena,Saceleanu AdrianaORCID

Abstract

This study evaluates the antimicrobial and antioxidant activities of five essential oils (EO): pine oil, thyme oil, sage oil, fennel oil, and eucalyptus essential oils. To identify the chemical composition of the essential oils, we used gas chromatography coupled to a mass spectrometer (GC-MS). EO are predominantly characterized by the presence of monoterpene hydrocarbons and oxygenated monoterpenes, except in the case of fennel essential oil which contains phenylpropanoids as its main components. The antimicrobial activity of the EO was highlighted on four standard microbial strains (two Gram-negative strains-Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853; one Gram-positive strain Staphylococcus aureus ATCC 25923, and one yeast strain-Candida albicans ATCC 10231). Antimicrobial activity was assessed by measuring the diameter of the inhibition zone, and by determining the values of the minimum inhibitory concentration (MIC) and minimum concentration of biofilm eradication (MCBE). Analyzing the diameter values of the inhibition zones we observed increased efficiency of thyme essential oil, which showed the highest values for all tested microbial species. The results of tests performed in a liquid confirm the high sensitivity of the standard strain Escherichia coli ATCC 25922 to the action of all essential oils, the lowest values of MIC being recorded for sage and thyme essential oils. For the most essential oils tested in this study, the MCBE values are close to the MIC values, except for the pine EO which seems to have stimulated the adhesion of the yeast strain at concentrations lower than 5%. The study highlights the antimicrobial activity of the tested essential oils on Gram-positive and Gram-negative strains.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3