Phased Array Ultrasonic Sector Scan Imaging of Helicopter Damper Bolts Based on Vector Coherence Factor

Author:

Huang Jingxing,Chen Ming,Kong Qingru,Xiao Liangzhong,Lu Chao,Chen Yao

Abstract

Non-destructive testing of the cracks on the in-service bolt’s shank with size M18 is a challenging technical problem. Due to the weak echo energy of cracks with large buried depths, the conventional phased array ultrasonic sector scan imaging has a low signal-to-noise ratio, resulting in the effective defect echo submerged in the structural wave of bolts. This work proposes a method of phased array ultrasonic sector scan imaging based on vector coherence factors to detect the microcracks on the surface of the bolt shank. This is achieved by weighting the phased array sector scan imaging with the vector coherence factor to detect the microcracks of the in-service helicopter damper bolt. Experimental work is also carried out to contrast the SNR value of cracks at buried depths of 70 mm and 90 mm with traditional phased array ultrasonic sector scanning images. This demonstrates that the proposed phased array ultrasonic sector scan imaging based on vector coherence factors detected the cracks with a depth of 0.1 mm at the buried depth of 90 mm. The SNR value of the cracks at the buried depth 70 mm in DAS_VCF images is improved by 11.67 dB, compared with the traditional DAS images, in the case of the focus depth at 60 mm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. FATIGUE MICROCRACKS IN A LOW CARBON STEEL

2. Investigation of Bolt Group Configurations on Load Distribution and Joint Failure

3. Effectiveness of a Simplified Pullout Test Using a Post-Installable Break-Off Bolt;Ghang;Res. Nondestruct. Eval.,2013

4. Non-destructive testing of materials subject to atmospheric stress corrosion cracking;Martin;Insight,2009

5. Penetrant testing and year 2060;Dubosc;Eur. Conf. Non-Destr. Test. Curran Assoc.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasonic testing in the field of engineering joining;The International Journal of Advanced Manufacturing Technology;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3