MinerGuard: A Solution to Detect Browser-Based Cryptocurrency Mining through Machine Learning

Author:

Wu Min-HaoORCID,Lai Yen-Jung,Hwang Yan-Ling,Chang Ting-Cheng,Hsu Fu-HauORCID

Abstract

Coinhive released its browser-based cryptocurrency mining code in September 2017, and vicious web page writers, called vicious miners hereafter, began to embed mining JavaScript code into their web pages, called mining pages hereafter. As a result, browser users surfing these web pages will benefit mine cryptocurrencies unwittingly for the vicious miners using the CPU resources of their devices. The above activity, called Cryptojacking, has become one of the most common threats to web browser users. As mining pages influence the execution efficiency of regular programs and increase the electricity bills of victims, security specialists start to provide methods to block mining pages. Nowadays, using a blocklist to filter out mining scripts is the most common solution to this problem. However, when the number of new mining pages increases quickly, and vicious miners apply obfuscation and encryption to bypass detection, the detection accuracy of blacklist-based or feature-based solutions decreases significantly. This paper proposes a solution, called MinerGuard, to detect mining pages. MinerGuard was designed based on the observation that mining JavaScript code consumes a lot of CPU resources because it needs to execute plenty of computation. MinerGuard does not need to update data used for detection frequently. On the contrary, blacklist-based or feature-based solutions must update their blocklists frequently. Experimental results show that MinerGuard is more accurate than blacklist-based or feature-based solutions in mining page detection. MinerGuard’s detection rate for mining pages is 96%, but MinerBlock, a blacklist-based solution, is 42.85%. Moreover, MinerGuard can detect 0-day mining pages and scripts, but the blacklist-based and feature-based solutions cannot.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Web-based Cryptojacking in the Wild;Musch;arXiv,2018

2. How you get shot in the back: A systematical study about cryptojacking in the real world;Hong;Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,2018

3. Seismic: Secure in-lined script monitors for interrupting cryptojacks;Wang;Proceedings of the European Symposium on Research in Computer Security,2018

4. Minethrottle: Defending against wasm in-browser cryptojacking;Bian;Proceedings of the Web Conference 2020,2020

5. Sensitive information tracking in commodity {IoT};Celik;Proceedings of the 27th USENIX Security Symposium (USENIX Security 18),2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3