The Application of Fault-Tolerant Partition Resolvability in Cycle-Related Graphs

Author:

Azhar KamranORCID,Zafar Sohail,Kashif AghaORCID,Aljaedi AmerORCID,Albalawi UmarORCID

Abstract

The concept of metric-related parameters permeates all of graph theory and plays an important role in diverse networks, such as social networks, computer networks, biological networks and neural networks. The graph parameters include an incredible tool for analyzing the abstract structures of networks. An important metric-related parameter is the partition dimension of a graph holding auspicious applications in telecommunication, robot navigation and geographical routing protocols. A fault-tolerant resolving partition is a preference for the concept of a partition dimension. A system is fault-tolerant if failure of any single unit in the originally used chain is replaced by another chain of units not containing the faulty unit. Due to the optimal fault tolerance, cycle-related graphs have applications in network analysis, periodic scheduling and surface reconstruction. In this paper, it is shown that the partition dimension (PD) and fault-tolerant partition dimension (FTPD) of cycle-related graphs, including kayak paddle and flower graphs, are constant and free from the order of these graphs. More explicitly, the FTPD of kayak paddle and flower graphs is four, whereas the PD of flower graphs is three. Finally, an application of these parameters in a scenario of installing water reservoirs in a locality has also been furnished in order to verify our findings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Chapter 13, Communication networks;Meyer,2010

2. Leaves of trees. Proceeding of the 6th Southeastern Conf. Combinatorics, Graph Theory, and Computing;Slater;Congr. Numer.,1975

3. On the metric dimension of a graph;Harary;Theory Comput. Syst. Ars Combinatoria,1976

4. The partition dimension of a graph

5. Network Discovery and Verification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3