Calligraphy Character Detection Based on Deep Convolutional Neural Network

Author:

Peng XianlinORCID,Kang Jian,Wu Yinjie,Feng Xiaoyi

Abstract

Calligraphy (the special art of drawing characters with a brush specially made by the Chinese) is an integral part of Chinese culture, and detecting Chinese calligraphy characters is highly significant. At present, there are still some challenges in the detection of ancient calligraphy. In this paper, we are interested in the calligraphy character detection problem focusing on the calligraphy character boundary. We chose High-Resolution Net (HRNet) as the calligraphy character feature extraction backbone network to learn reliable high-resolution representations. Then, we used the scale prediction branch and the spatial information prediction branch to detect the calligraphy character region and categorize the calligraphy character and its boundaries. We used the channel attention mechanism and the feature fusion method to improve the detection effectiveness in this process. Finally, we pre-trained with a self-generated calligraphy database and fine-tuned with a real calligraphy database. We set up two groups of ablation studies for comparison, and the comparison results proved the superiority of our method. This paper found that the classification of characters and character boundaries has a certain auxiliary effect on single character detection.

Funder

the National Natural Science Foundation of China

the Key RD Program of Shaanxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chinese Character Font Classification in Calligraphy and Painting Works Based on Decision Fusion;2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3