Abstract
Calligraphy (the special art of drawing characters with a brush specially made by the Chinese) is an integral part of Chinese culture, and detecting Chinese calligraphy characters is highly significant. At present, there are still some challenges in the detection of ancient calligraphy. In this paper, we are interested in the calligraphy character detection problem focusing on the calligraphy character boundary. We chose High-Resolution Net (HRNet) as the calligraphy character feature extraction backbone network to learn reliable high-resolution representations. Then, we used the scale prediction branch and the spatial information prediction branch to detect the calligraphy character region and categorize the calligraphy character and its boundaries. We used the channel attention mechanism and the feature fusion method to improve the detection effectiveness in this process. Finally, we pre-trained with a self-generated calligraphy database and fine-tuned with a real calligraphy database. We set up two groups of ablation studies for comparison, and the comparison results proved the superiority of our method. This paper found that the classification of characters and character boundaries has a certain auxiliary effect on single character detection.
Funder
the National Natural Science Foundation of China
the Key RD Program of Shaanxi
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chinese Character Font Classification in Calligraphy and Painting Works Based on Decision Fusion;2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2022-11