Evaluating Tissue Mechanical Properties Using Quantitative Mueller Matrix Polarimetry and Neural Network

Author:

Mi Changjiang,Shao Conghui,He HonghuiORCID,He ChaoORCID,Ma HuiORCID

Abstract

Evaluation of the mechanical properties of biological tissues has always been an important issue in the field of biomedicine. The traditional method for mechanical properties measurement is to perform in vitro tissue deformation experiments. With the fast development of optical and image processing techniques, more and more non-invasive and non-contact optical methods have been applied to the analysis of tissue mechanical features. In this study, we use Mueller matrix polarimetry to quantitatively obtain the mechanical properties of bovine tendon tissues. Firstly, to study the structural information and the changes in the optical characteristics of the tendon tissue under different stretching states, 3 × 3 Mueller matrix images of bovine tendon tissue samples are acquired by backscattering measurement setups based on a polarized camera. Then, we extract the frequency distribution histograms (FDHs) of the Mueller matrix elements to reveal the structural changes of the tendon tissue more clearly during the stretching process. Last, we calculate the Mueller matrix transformation (MMT) parameters, the total anisotropy t1 and the anisotropy direction α1 of the tendon tissue samples under different stretching processes to quantitatively characterize their structural changes under different mechanical states. The central moments of the MMT parameters can be used to distinguish the different stretching states of the tendon tissue. For better discrimination based on the MMT parameters, we design a multilayer neural network that takes the first-order moments of the MMT parameters as the input features. After training, a high-precision classification model of the stretching states of tendon tissue samples is finally obtained, and the total classification accuracy achieves 98%. The experimental results show that the Mueller matrix polarimetry can be a potential non-contact tool for tissue mechanical properties evaluation.

Funder

Shenzhen Key Fundamental Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Application of Digital Image Correlation to composite reinforcements testing

2. Deformation measurement by two-dimensional multi-camera full-field digital image correlation;Liu;Acta Opt. Sin.,2016

3. The Development and Latest Applications of Digital Image Correlation in Stress and Strain Measurement;Shunqing;Imaging Sci. Photochem.,2017

4. Chapter 2—Mechanical Properties of Biological Tissues;Innocenti,2022

5. Research progress in digital volume correlation method

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3