Study on Reinforcement Mechanism and Reinforcement Effect of Saturated Soil with a Weak Layer by DC

Author:

Li Jialei,Zhou Chong,Xin GongfengORCID,Long Guanxu,Zhang Wenliang,Li Chao,Zhuang Peizhi,Yao Zhanyong

Abstract

This paper presents a numerical investigation on the improvement mechanism of dynamic compaction (DC) in saturated soil of a weak layer with high levels of groundwater, using an improved fluid–solid coupling method with a Drucker–Prager–Cap soil model. The numerical model is verified by comparing with published test data at first, which show that the dual-phase coupling method can approximately reflect the development law of excess pore water pressure and the improvement effect of layered saturated soil foundation under DC. Then, based on the numerical model, the influences of the thickness and depth of the weak layer as well as tamping energy on the development and dissipation of excess pore water pressure, effective stress, and the relative degree of reinforcement during DC were investigated. The results showed that the embedment depth and thickness of the weak interlayer may greatly affect the effective reinforcement depth of DC. Meanwhile, the tamping energy and the groundwater table also play a great role in the improvement of the layered saturated soil under DC. The groundwater table should be lowered by dewatering or adding a drainage layer to achieve a better compaction effect during DC.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns

2. A comparative study between gravel and rubber drainage columns for mitigation of liquefaction hazards

3. Shaking table tests on shallow foundations over geocomposite and geogrid-reinforced liquefiable soils

4. Application of the dynamic compaction method for ground improvement of collapsible loess in Qinhai;Jun;Teknik Dergi,2022

5. Ground modification techniques for deep soft soils sites in Goa region;Majik,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3