A Validated HPLC Multichannel DAD Method for the Simultaneous Determination of Amoxicillin and Doxycycline in Pharmaceutical Formulations and Wastewater Samples

Author:

Becze Anca,Resz Maria-Alexandra,Ilea ArankaORCID,Cadar OanaORCID

Abstract

The quality of marketed pharmaceutical formulations must be guaranteed to attain better remedial effects and lower toxicity. The wide exploitation of antibiotics may lead to their presence as residues in body fluids and wastewaters, potentially toxic to human health. Consequently, determining antibiotics in pharmaceutical formulations and water samples is of significant importance. This paper aims to explore the possibilities of a high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) method to obtain a simple, fast, and efficient analytical tool for the simultaneous determination of antibiotics in pharmaceutical formulations and environmental samples. The method was completely validated with regard to specificity, linearity, detection and quantification limits, precision, accuracy, and robustness according to the requirements of existing guidelines, and was proven to be reliable and suitable for the envisioned application. The linearity study was conducted for the calibration curves in the range of 10–100 μg/mL. The limits of detection and quantification were found to be 0.2 and 0.7 μg/mL for amoxicillin and 0.3 and 1.0 μg/mL for doxycycline, respectively. The high recovery of drugs from their commercial pharmaceutical formulations (93%) and from wastewater samples (98%) indicated good accuracy and precision. The method is robust for small or deliberate changes to the chromatographic parameters, and it was successfully applied for the quantitative determination of amoxicillin and doxycycline in wastewater and commercial tablets. The obtained results proved that the validated method is appropriate for its intended use in the routine quality control and assay of both antibiotics studied.

Funder

Romanian National Authority for Scientific Research CNCS-UEFISCDI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3