Abstract
For the bearing-only target motion analysis (TMA), the pseudolinear Kalman filter (PLKF) solves the complex nonlinear estimation of the motion model parameters but suffers serious bias problems. The pseudolinear Kalman filter under the minimum mean square error framework (PL-MMSE) has a more accurate tracking ability and higher stability compared to the PLKF. Since the bearing signals are corrupted by non-Gaussian noise in practice, we reconstruct the PL-MMSE under Gaussian mixture noise. If some prior information, such as state constraints, is available, the performance of the PL-MMSE can be further improved by incorporating state constraints in the filtering process. In this paper, the mean square and estimation projection methods are used to incorporate PL-MMSE with linear constraints, respectively. Then, the linear approximation and second-order approximation methods are applied to merge PL-MMSE with nonlinear constraints, respectively. Simulation results demonstrate that the constrained PL-MMSE algorithms result in lower mean square errors and bias norms, which demonstrates the superiority of the constrained algorithms.
Funder
National Natural Science Foundation of China
Hunan Provincial Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献