Measurement-Driven Synthesis of Female Digital Mannequin Using Convex Sub-Volumes

Author:

Velez-Sanin SamuelORCID,Gutierrez JuanORCID,Correa Jorge,Builes-Roldan Carolina,Ruiz-Salguero OscarORCID

Abstract

In the context of computer-aided apparel-fitting simulation, the problem of generating (a) simulation-inexpensive and (b) tailor-measurement-driven digital mannequins is central. Three-dimensional scanning of human bodies produces high-fidelity datasets. However, this technique does not satisfy conditions (a) and (b) above. In addition, it requires extensive data cleaning and processing. Existing approaches to this problem broadly fall into these mainstreams: (i) biased scaling, interpolation, or morphing of template models; or (ii) bottom-up construction of anatomy (bone medial axis, kinematic joints, muscles, skin, and other layers). Both alternatives imply extensive scanning, application of heuristics, tuning, and storage, among other tasks. Both alternatives produce non-convex datasets that have to be processed further for cloth–body interaction simulation, as physics engines require some type of data convexity for realistic simulations. This manuscript presents a modeling methodology that partially overcomes these limitations by (1) coarsely approximating a template female body with sets of convex volumes (ellipsoids and cushions), (2) building a set of Reference Mannequins for a particular set of extreme and average tailor measurements, and (3) creating sets of functions that synthesize new individuals of digital mannequins as reunions of convex volumes that satisfy specified tailor measurements. These mannequins present a reasonable and realistic demeanor. At the same time, they are shown to be economical at the stage of simulation of garment fitting. Future work is encouraged to define kinematic chains for straightforward pose definition, modeling male bodies, and exploring the behavior of the synthesis functions with more parameters.

Funder

Universidad EAFIT

Manufactura Cohesiva SAS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3