Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems

Author:

Cui YueORCID,Liu Peng,Zhou YaleiORCID,Duan Wenli

Abstract

With the rapid popularization of intelligent terminals and the explosive growth of wireless communication service demand, future mobile communication technology will face many challenges. Non-orthogonal multiple access (NOMA) technology for 5G can provide many connections and effectively improve the frequency spectrum and energy efficiency compared to traditional orthogonal multiple access technologies. Therefore, in recent years, NOMA technology has become one of the research hotspots of numerous scholars. However, the resource allocation problem in the NOMA system, as a high-dimensional nonlinear programming problem, has not been well studied. In addition, the particle swarm optimization algorithm can also effectively find the optimal solution for complex and constrained problems. Still, at the same time, it is easy to fall into local optimal defects. In this context, we decouple the high-dimensional nonlinear programming problem to maximize system energy efficiency into sub-problems: subchannel and power allocation. Firstly, a low-complexity greedy algorithm based on the principle of worst-case subchannel priority matching is proposed to solve the subchannel assignment problem. In addition, we further apply the modified particle swarm optimization algorithm to allocate power to the NOMA downlink system, aiming to improve the energy efficiency of the communication system as much as possible under the premise of ensuring the quality of service (QoS). Simulation results show that our proposed scheme has low complexity and can significantly improve the energy efficiency of the NOMA system and achieve better user fairness.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3