Construction of Full-View Data from Limited-View Data Using Artificial Neural Network in the Inverse Scattering Problem

Author:

Jeong Sang-Su,Park Won-KwangORCID,Joh Young-DeukORCID

Abstract

Generally, the results of imaging the limited view data in the inverse scattering problem are relatively poor, compared to those of imaging the full view data. It is known that solving this problem mathematically is very difficult. Therefore, the main purpose of this study is to solve the inverse scattering problem in the limited view situation for some cases by using artificial intelligence. Thus, we attempted to develop an artificial intelligence suitable for problem-solving for the cases where the number of scatterers was 2 and 3, respectively, based on CNN (Convolutional Neural Networks) and ANN (Artificial Neural Network) models. As a result, when the ReLU function was used as the activation function and ANN consisted of four hidden layers, a learning model with a small mean square error of the output data through the ground truth data and this learning model could be developed. In order to verify the performance and overfitting of the developed learning model, limited view data that were not used for learning were newly created. The mean square error between output data obtained from this and ground truth data was also small, and the data distributions between the two data were similar. In addition, the locations of scatterers by imaging the out data with the subspace migration algorithm could be accurately found. To support this, data related to artificial neural network learning and imaging results using the subspace migration algorithm are attached.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Biomedical imaging modalities: a tutorial

2. An Introduction to Mathematics of Emerging Biomedical Imaging;Ammari,2008

3. Mathematical Methods in Elasticity Imaging;Ammari,2015

4. Optical tomography in medical imaging

5. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion;Bleistein,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3