Intelligent Data Analytics Framework for Precision Farming Using IoT and Regressor Machine Learning Algorithms

Author:

Rokade AshayORCID,Singh ManwinderORCID,Malik Praveen KumarORCID,Singh RajeshORCID,Alsuwian TurkiORCID

Abstract

Smart farming with precise greenhouse monitoring in various scenarios is vital for improved agricultural growth management. The Internet of Things (IoT) leads to a modern age in computer networking that is gaining traction. This paper used a regression-based supervised machine learning approach to demonstrate a precise control of sensing parameters, CO2, soil moisture, temperature, humidity, and light intensity, in a smart greenhouse agricultural system. The proposed scheme comprised four main components: cloud, fog, edge, and sensor. It was found that the greenhouse could be remotely operated for the control of CO2, soil moisture, temperature, humidity, and light, resulting in improved management. Overall implementation was remotely monitored via the IoT using Message Query Telemetry Transport (MQTT), and sensor data were analysed for their standard and anomalous behaviours. Then, for practical computation over the cloud layer, an analytics and decision-making system was developed in the fog layer and constructed using supervised machine learning algorithms for precise management using regression modelling methods. The proposed framework improved its presentation and allowed us to properly accomplish the goal of the entire framework.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Based Precise Greenhouse Management System using Machine Learning Algorithm;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. Cloud-Based Smart Cultivation System Using IoT Data Analytics;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

3. Smart Agriculture Applications Using Internet of Things;Practice, Progress, and Proficiency in Sustainability;2024-01-05

4. IoT Integration for Enhanced Turmeric Cultivation: A Case Study in Smart Agriculture;BIO Web of Conferences;2024

5. Electronics in precision control for mechanical engineering: A brief overview;AIP Conference Proceedings;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3