Automatic Classification of Eyewitness Messages for Disaster Events Using Linguistic Rules and ML/AI Approaches

Author:

Haider Sajjad,Mahmood AzharORCID,Khatoon ShaheenORCID,Alshamari Majed,Afzal Muhammad Tanvir

Abstract

Emergency response systems require precise and accurate information about an incident to respond accordingly. An eyewitness report is one of the sources of such information. The research community has proposed diverse techniques to identify eyewitness messages from social media platforms. In our previous work, we created grammar rules by exploiting the language structure, linguistics, and word relations to automatically extract feature words to classify eyewitness messages for different disaster types. Our previous work adopted a manual classification technique and secured the maximum F-Score of 0.81, far less than the static dictionary-based approach with an F-Score of 0.92. In this work, we enhanced our work by adding more features and fine-tuning the Linguistic Rules to identify feature words related to Twitter Eyewitness messages for Disaster events, named as LR-TED approach. We used linguistic characteristics and labeled datasets to train several machine learning and deep learning classifiers for classifying eyewitness messages and secured a maximum F-score of 0.93. The proposed LR-TED can process millions of tweets in real-time and is scalable to diverse events and unseen content. In contrast, the static dictionary-based approaches require domain experts to create dictionaries of related words for all the identified features and disaster types. Additionally, LR-TED can be evaluated on different social media platforms to identify eyewitness reports for various disaster types in the future.

Funder

This research was funded by the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Processing Social Media Messages in Mass Emergency

2. Microblogging during Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness;Vieweg;Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,2010

3. What is Twitter, a social network or a news media?;Kwak;Proceedings of the 19th International Conference on World Wide Web,2010

4. A Survey of Techniques for Event Detection in Twitter

5. Development of social media analytics system for emergency event detection and crisismanagement;Khatoon;Comput. Mater. Contin.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text Preprocessing Approaches in CNN for Disaster Reports Dataset;2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3