A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems

Author:

Aboud AhlemORCID,Rokbani NizarORCID,Neji BilelORCID,Al Barakeh Zaher AlORCID,Mirjalili SeyedaliORCID,Alimi Adel M.ORCID

Abstract

Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal with such problems. However, the standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs to date. This paper proposes a Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function, which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and convergence behavior. Two variants of the proposed DB-CSA approach are developed: the first variant is used to solve a set of MaOPs with 2, 3, 5, 7, 8, 10,15 objectives, and the second aims to solve several types of DMOPs with different time-varying Pareto optimal sets and a Pareto optimal front. The second variant of DB-CSA algorithm (DB-CSA-II) is proposed to solve DMOPs, including a dynamic optimization process to effectively detect and react to the dynamic change. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference are the main measurement metrics used to compare the DB-CSA approach to the state-of-the-art MOEAs. The Taguchi method has been used to manage the meta-parameters of the DB-CSA algorithm. All quantitative results are analyzed using the non-parametric Wilcoxon signed rank test with 0.05 significance level, which validated the efficiency of the proposed method for solving 44 test beds (21 DMOPs and 23 MaOPS).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3