An Efficient Reliability Method with Multiple Shape Parameters Based on Radial Basis Function

Author:

Du WenyiORCID,Ma Juan,Yue PengORCID,Gong Yongzhen

Abstract

Structural reliability analysis has an inherent contradiction between efficiency and accuracy. The metamodel can significantly reduce the computational cost of reliability analysis by a simpler approximation. Therefore, it is crucial to build a metamodel, which achieves the minimum simulations and accurate estimation for reliability analysis. Aiming at this, an effective adaptive metamodel based on the combination of radial basis function (RBF) model and Monte Carlo simulation (MCS) is proposed. Different shape parameters are first used to generate the weighted prediction variance, and the search for new training samples is guided by the active learning function that achieves a tradeoff of (1) being close enough to limit state function (LSF) to have a high reliability sensitivity; (2) keeping enough distance between the existing samples to avoid a clustering problem; and (3) being in the sensitive region to ensure the effectiveness of the information obtained. The performance of the proposed method for a nonlinear, non-convex, and high dimensional reliability analysis is validated by three numerical cases. The results indicate the high efficiency and accuracy of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty

2. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology

3. Reliability analysis of a floating offshore wind turbine using Bayesian Networks

4. Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines;Ma;Struct. Eng. Mech.,2022

5. Structural Reliability Methods;Ditlevsen,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3