Malware Variants Detection Model Based on MFF–HDBA

Author:

Wang ShuoORCID,Wang Jian,Song YafeiORCID,Li Sicong,Huang Wei

Abstract

A massive proliferation of malware variants has posed serious and evolving threats to cybersecurity. Developing intelligent methods to cope with the situation is highly necessary due to the inefficiency of traditional methods. In this paper, a highly efficient, intelligent vision-based malware variants detection method was proposed. Firstly, a bilinear interpolation algorithm was utilized for malware image normalization, and data augmentation was used to resolve the issue of imbalanced malware data sets. Moreover, the paper improved the convolutional neural network (CNN) model by combining multi-scale feature fusion (MFF) and channel attention mechanism for more discriminative and robust feature extraction. Finally, we proposed a hyperparameter optimization algorithm based on the bat algorithm, referred to as HDBA, in order to overcome the disadvantage of the traditional hyperparameter optimization method based on manual adjustment. Experimental results indicated that our model can effectively and efficiently identify malware variants from real and daily networks, with better performance than state-of-the-art solutions.

Funder

National Natural Science Foundation of China

National Science Foundation of Shaanxi Provence

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malicious network traffic detection method based on traffic behavior characteristics and machine learning;2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2023-12-15

2. Malicious file detection method based on deep neural network and gray-scale graph feature fusion;2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2023-10-11

3. Image-Based Malware Detection Using α-Cuts and Binary Visualisation;Applied Sciences;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3