Abstract
Large-scale tanks are widely used for storing chemicals and fuels. Their failure due to natural (e.g., earthquakes) and/or man-made hazards can lead to disastrous consequences. Nonetheless, they are often constructed in seismic-prone regions. For this reason, base isolation is often used for the seismic protection of large tanks, aiming to “decouple” the superstructure from the imposed ground motions. In this study, a combined optimization formulation is presented in order to further improve the seismic response of a base-isolated tank. The main aim is to optimize both the critical design parameters and the placement of the minimum number of isolators at the base of the tank. In particular, a Cuckoo Search (CS) optimizer is used to optimize the dynamic performance of liquid storage tanks, isolated either via single friction pendulum bearings (SFPB) or triple friction pendulum bearings (TFPB). The main objective is to minimize the eccentricity between the center of mass and the center of rigidity of the isolation system, while appropriate constraints are also imposed. Several cases are examined, while the results are compared with respect to isolator displacement fragility curves, as well as the reduced accelerations at the base of the tank. According to the findings of this study, the tank industry can significantly benefit from the proposed approach, as a more cost-efficient design of the base-isolation system of large-scale tanks can be achieved, i.e., using fewer isolators with optimal key parameters.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献