Analysis and Optimization of Dynamic and Static Characteristics of Machining Center Direct-Drive Turntable

Author:

Huang Bo,Wang JianORCID,Tan Bangyu,Zhao Jianguo,Liu Kang,Wang Junxiong

Abstract

There are few studies on optimizing the dynamic and static characteristics of direct-drive turntables. In terms of dynamic and static characteristic analysis, most studies only analyze the dynamic and static characteristics of direct-drive turntables in a single machining position and working condition. The optimization is mainly for individual parts without considering the overall structure of the turntable. A multi-objective optimization method based on the back-propagation neural network (BP) and the non-dominated sorting genetic algorithm is proposed to ensure the machining accuracy of the direct-drive turntable, reduce the total mass, and improve its dynamic and static characteristics. In this paper, the workpiece and direct-drive turntable are studied as a whole. Static and modal analyses determine the maximum deformation locations and vulnerable parts of the turntable. Topology optimization analysis was used to find the redundant mass parts. We determined the optimization objectives and dimensional parameters based on the direct-drive turntable’s structural and topology optimization results. Using a central composite experimental design, we obtained test points and fitted them to a response surface model using a BP neural network. A multi-objective genetic algorithm then obtained the optimal solution. After multi-objective optimization, we reduced the mass of the direct-drive turntable by 9.02% and 21.394% compared with the topologically optimized and original models, respectively. The dynamic and static characteristics of the direct-drive turntable increased, and a lightweight design was achieved.

Funder

the Science & Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3