Improved Procedure for Multi-Focus Images Using Image Fusion with qshiftN DTCWT and MPCA in Laplacian Pyramid Domain

Author:

Mohan Chinnem RamaORCID,Chouhan KuldeepORCID,Rout Ranjeet KumarORCID,Sahoo Kshira SagarORCID,Jhanjhi Noor ZamanORCID,Ibrahim Ashraf OsmanORCID,Abdelmaboud AbdelzahirORCID

Abstract

Multi-focus image fusion (MIF) uses fusion rules to combine two or more images of the same scene with various focus values into a fully focused image. An all-in-focus image refers to a fully focused image that is more informative and useful for visual perception. A fused image with high quality is essential for maintaining shift-invariant and directional selectivity characteristics of the image. Traditional wavelet-based fusion methods, in turn, create ringing distortions in the fused image due to a lack of directional selectivity and shift-invariance. In this paper, a classical MIF system based on quarter shift dual-tree complex wavelet transform (qshiftN DTCWT) and modified principal component analysis (MPCA) in the laplacian pyramid (LP) domain is proposed to extract the focused image from multiple source images. In the proposed fusion approach, the LP first decomposes the multi-focus source images into low-frequency (LF) components and high-frequency (HF) components. Then, qshiftN DTCWT is used to fuse low and high-frequency components to produce a fused image. Finally, to improve the effectiveness of the qshiftN DTCWT and LP-based method, the MPCA algorithm is utilized to generate an all-in-focus image. Due to its directionality, and its shift-invariance, this transform can provide high-quality information in a fused image. Experimental results demonstrate that the proposed method outperforms many state-of-the-art techniques in terms of visual and quantitative evaluations.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3