Electron Transport in n-Type InSe van der Waals Crystals with Co Impurities

Author:

Kudrynskyi Zakhar R.ORCID,Mintyanskii Illya V.,Savitskii Petro I.,Kovalyuk Zakhar D.

Abstract

Intercalation and doping are promising routes to tune properties of van der Waals (vdW) semiconductors and pave the way for their applications in digital electronics beyond Moore’s law, sensors and spintronics. The indium selenide (InSe) vdW crystal shows great promise for use in next-generation semiconductor technologies. For these applications to be realized, the effects of impurities on properties of InSe must be understood. Here, we present a comparative experimental study of electron transport in n-type InSe semiconductor doped and electrochemically intercalated with magnetic cobalt (Co) impurities. It is shown that the presence of Co decreases the free electron density, the Hall mobility along layers and the conductivity anisotropy σ⊥C/σ‖C. Furthermore, this leads to a change of the behavior of σ⊥C(T) dependence from a metallic one in pristine samples to a semiconducting one in samples with Co. We also demonstrate that the interaction of electrons with space-charge regions is an effective scattering mechanism, which should be taken into account in doped and intercalated crystals. The present work is important for the basic physics knowledge of the effect of Co impurities on physical properties of InSe, which is needed to tailor the parameters of this semiconductor for applications in electronics and spintronics.

Funder

the National Academy of Sciences of Ukraine

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3