Cooperative Power-Domain NOMA Systems: An Overview

Author:

Ghous Mujtaba,Hassan Ahmad KamalORCID,Abbas Ziaul Haq,Abbas GhulamORCID,Hussien Aseel,Baker TharORCID

Abstract

Interference has been a key roadblock against the effectively deployment of applications for end-users in wireless networks including fifth-generation (5G) and beyond fifth-generation (B5G) networks. Protocols and standards for various communication types have been established and utilised by the community in the last few years. However, interference remains a key challenge, preventing end-users from receiving the quality of service (QoS) expected for many 5G applications. The increased need for better data rates and more exposure to multimedia information lead to a non-orthogonal multiple access (NOMA) scheme that aims to enhance spectral efficiency and link additional applications employing successive interference cancellation and superposition coding mechanisms. Recent work suggests that the NOMA scheme performs better when combined with suitable wireless technologies specifically by incorporating antenna diversity including massive multiple-input multiple-output architecture, data rate fairness, energy efficiency, cooperative relaying, beamforming and equalization, network coding, and space–time coding. In this paper, we discuss several cooperative NOMA systems operating under the decode-and-forward and amplify-and-forward protocols. The paper provides an overview of power-domain NOMA-based cooperative communication, and also provides an outlook of future research directions of this area.

Funder

University of Sharjah

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3