Entanglement, and Unsorted Database Search in Noise-Based Logic

Author:

Kish Laszlo B.,Daugherity Walter C.

Abstract

We explore the collapse of “wavefunction” and the measurement of entanglement in the superpositions of hyperspace vectors in classical physical instantaneous-noise-based logic (INBL). We find both similarities with and major differences from the related properties of quantum systems. Two search algorithms utilizing the observed features are introduced. For the first one we assume an unsorted names database set up by Alice that is a superposition (unknown by Bob) of up to n = 2N strings; those we call names. Bob has access to the superposition wave and to the 2N reference noises of the INBL system of N noise bits. For Bob, to decide if a given name x is included in the superposition, once the search has begun, it takes N switching operations followed by a single measurement of the superposition wave. Thus, the time and hardware complexity of the search algorithm is O[log(n)], which indicates an exponential speedup compared to Grover’s quantum algorithm in a corresponding setting. An extra advantage is that the error probability of the search is zero. Moreover, the scheme can also check the existence of a fraction of a string, or several separate string fractions embedded in an arbitrarily long, arbitrary string. In the second algorithm, we expand the above scheme to a phonebook with n names and s phone numbers. When the names and numbers have the same bit resolution, once the search has begun, the time and hardware complexity of this search algorithm is O[log(n)]. In the case of one-to-one correspondence between names and phone numbers (n = s), the algorithm offers inverse phonebook search too. The error probability of this search algorithm is also zero.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3