Abstract
The objective of this study was to investigate if the inertial data collected from normal human walk can be used to reveal the underlying terrain types. For this purpose, we recorded the gait patterns of normal human walk on six different terrain types with variation in hardness and friction using body mounted inertial sensors. We collected accelerations and angular velocities of 40 healthy subjects with two smartphones embedded inertial measurement units (MPU-6500) attached at two different body locations (chest and lower back). The recorded data were segmented with stride based segmentation approach and 194 tempo-spectral features were computed for each stride. We trained two machine learning classifiers, namely random forest and support vector machine, and cross validated the results with 10-fold cross-validation strategy. The classification tasks were performed on indoor–outdoor terrains, hard–soft terrains, and a combination of binary, ternary, quaternary, quinary and senary terrains. From the experimental results, the classification accuracies of 97% and 92% were achieved for indoor–outdoor and hard–soft terrains, respectively. The classification results for binary, ternary, quaternary, quinary and senary class classification were 96%, 94%, 92%, 90%, and 89%, respectively. These results demonstrate that the stride data collected with the low-level signals of a single IMU can be used to train classifiers and predict terrain types with high accuracy. Moreover, the problem at hand can be solved invariant of sensor type and sensor location.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献