What Lies Beneath One’s Feet? Terrain Classification Using Inertial Data of Human Walk

Author:

Hashmi Muhammad Zeeshan Ul HasnainORCID,Riaz QaiserORCID,Hussain Mehdi,Shahzad Muhammad

Abstract

The objective of this study was to investigate if the inertial data collected from normal human walk can be used to reveal the underlying terrain types. For this purpose, we recorded the gait patterns of normal human walk on six different terrain types with variation in hardness and friction using body mounted inertial sensors. We collected accelerations and angular velocities of 40 healthy subjects with two smartphones embedded inertial measurement units (MPU-6500) attached at two different body locations (chest and lower back). The recorded data were segmented with stride based segmentation approach and 194 tempo-spectral features were computed for each stride. We trained two machine learning classifiers, namely random forest and support vector machine, and cross validated the results with 10-fold cross-validation strategy. The classification tasks were performed on indoor–outdoor terrains, hard–soft terrains, and a combination of binary, ternary, quaternary, quinary and senary terrains. From the experimental results, the classification accuracies of 97% and 92% were achieved for indoor–outdoor and hard–soft terrains, respectively. The classification results for binary, ternary, quaternary, quinary and senary class classification were 96%, 94%, 92%, 90%, and 89%, respectively. These results demonstrate that the stride data collected with the low-level signals of a single IMU can be used to train classifiers and predict terrain types with high accuracy. Moreover, the problem at hand can be solved invariant of sensor type and sensor location.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3