Feasibility Study for Using Piezoelectric-Based Weigh-In-Motion (WIM) System on Public Roadway

Author:

Xiong Haocheng,Zhang YinningORCID

Abstract

Weigh-in-Motion system has been the primary selection of U.S. government agencies as the weighing enforcement for decades to protect the road pavement. In recent years, the number of trucks has increased by about 40% and in 2017, they travel 25% more annually than in 2016. The lack of the budget has slowed down the expansion of weighing enforcement to catch up with the growing workload of vehicle weighing. Unsupervised pavement section suffers more pavement damage and increased repairing cost. In this work, a piezoelectric material based WIM system (P-WIM) is developed. Such a system consists of several piezoelectric material disks that are capable of generating characteristic voltage output from passing vehicles. The axle loading of the vehicle can be determined by analyzing the voltage generated from the P-WIM. Compared to traditional WIM system, P-WIM requires nearly zero maintenance and costs 80% less on capital investment and less labor and effort to integrate. To evaluate the feasibility of this technology to serve as weighing enforcement on public roadways, prototype P-WIMs are fabricated and installed at a weigh station. The vehicle loading information provided by the weigh station is used to determine the force transmission percentage of the installed P-WIMs, which is an important parameter to determine the vehicles’ axle loading by generated voltage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Weigh-in-Motion of Road Vehicles: Final Report of the COST 323 Action,2002

2. Handbook of Vehicle–Road Interaction;Cebon,1999

3. Enhancement of bridge live loads using weigh-in-motion data

4. NCHRP REPORT 683—Protocols for Collecting and Using Traffic Data in Bridge Design;Sivakumar,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3