Author:
Buriboev ,Kang ,Ko ,Oh ,Abduvaitov ,Jeon
Abstract
The monitoring utilization and workloads of computer hardware components, such as CPU, RAM, bus, and storage, are an ideal way to evaluate the effectiveness of these components. In this paper, we surveyed the basic concepts, characteristics, and parameters of computer systems that determine system performance, and the types of models that provide adequate modeling of these systems. We investigated and developed the applied aspects of the theory of fuzzy sets’ principles and the Matlab environment tools for monitoring and evaluating the state of computing systems. The idea of the paper is to identify the state of the computer infrastructure by using the models of Mamdani and Sugeno FIS (fuzzy inference system) to evaluate the impact of RAM and storage on CPU performance. With this approach, we observed the behavior of computer infrastructure. The results are useful for understanding performance issues with regard to specific bottlenecks and determining the correlation of performance counters. Moreover, the model presents linguistic results. Hereafter, performance counter correlations will support the development of algorithms that can detect whether the performance of a given computer will be affected by a reasonable priority. The performance assertions derived from these approaches allow resource management policies to prevent performance degradation, and as a result, the infrastructure will be able to serve safely as expected. These methods can be applied across the entire spectrum of computer systems, from personal computers to large mainframes and supercomputers, including both centralized and distributed systems. We look forward to their continued use, as well as their improvement when it is necessary to evaluate future systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference22 articles.
1. The Art of Computer Systems Performance Analysis—Techniques for Experimental Design, Measurement, Simulation, and Modeling;Jain,1991
2. Workload Data;Feitelson,2015
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献