Energy Potential and Sustainability of Straw Resources in Three Regions of Ghana

Author:

Seglah Patience AfiORCID,Wang YajingORCID,Wang Hongyan,Neglo Komikouma Apelike WobuibeORCID,Gao Chunyu,Bi YuyunORCID

Abstract

Anthropogenic global warming and the depletion of nonrenewable resources necessitate a transition towards bioenergy to accelerate sustainable development and carbon neutrality. This study quantified the availability and energy potential of crop (cereals, legumes, roots and tubers) straws based on data from the Northern, North East and Savannah regions in Ghana. The annual technical straw potential was 2,967,933 tonnes, whilst the crop straws with the highest technical potential were yam (935,927 tonnes), groundnut (485,236 tonnes), maize (438,926 tonnes) and soybean (374,564 tonnes). The technical energy potential of all the crop straws was 42,256 TJ, although the energy potential of yam, groundnut, maize and soybean was 13,922 TJ, 7611 TJ, 5704 TJ and 5409 TJ, respectively. There was a linear correlation between the straw produced and the energy potential per region. The Northern region (28,153 TJ) recorded the highest energy potential followed by the Savannah (8330 TJ) and North East (5773 TJ) regions. To serve as context, the research placed an emphasis on the sustainability of crop straws for bioenergy and added a brief analysis of the life cycle assessment (LCA) of bioenergy scenarios to explore the environmental sustainability of crop straw-based power generation. This study will serve as a reference in understanding LCA inference on practicable research of crop straw-based, power plant expansion in Ghana and Sub-Saharan Africa (SSA).

Funder

The National Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference99 articles.

1. Ghana's renewable energy agenda: Legislative drafting in search of policy paralysis

2. Energy Access for Development;Pachauri,2012

3. Conservation of energy resources for sustainable development: A big issue and challenge for future;Chand,2020

4. Systematic assessment of the availability and utilization potential of biomass in Bangladesh

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3