Application of a Partial Nitrogen Lab-Scale Sequencing Batch Reactor for the Treatment of Organic Wastewater and Its N2O Production Pathways, and the Microbial Mechanism

Author:

Liu YingORCID,Ma Boyan,Liu ZhipeiORCID

Abstract

Partial nitrification (PN) is a widely used wastewater treatment process. Here a lab-scale sequencing batch reactor for PN (PN-SBR) was constructed and run with artificial organic wastewater for 225 days. Results showed that the SBR reached a stable PN state after 174 days of operation and >98% of NH4+-N was removed and >60% was converted to NO2−-N with low effluent NO3−-N content. In a PN-SBR cycle at stage IV, the release of N2O was accompanied by the production of hydroxylamine, occurring mainly in the conversion from anaerobic to aerobic phases, and the amount of N2O produced was about 6.3% of the total nitrogen. The N2O isotopic signature results suggested that hydroxylamine oxidation was the main pathway for N2O production. Illumina MiSeq sequencing results showed that Proteobacteria and Bacteroidetes were the dominant phyla throughout the operation period. Many heterotrophic nitrifiers were significantly enriched, leading to ammonia removal and nitrite accumulation, including Acidovorax, Paracoccus, Propionibacteriaceae_unclassified, Shinella, Comamonas and Brevundimonas. Representative strains were isolated from the reactor and they were capable of efficiently producing nitrite from ammonia. These results provide a guide for the direct running of PN reactors for treating organic wastewater and help to understand the microbial processes and N2O release pathways and the microbial mechanism of partial nitrification.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3