Modulation of Deiodinase Types 2 and 3 during Skeletal Muscle Regeneration

Author:

Ogawa-Wong Ashley,Carmody Colleen,Le Katherine,Marschner Rafael AguiarORCID,Larsen P. Reed,Zavacki Ann Marie,Wajner Simone MagagninORCID

Abstract

The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.

Funder

NIDDK

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3