Energetic Contributions Including Gender Differences and Metabolic Flexibility in the General Population and Athletes

Author:

Yang Woo-HwiORCID,Park Jeong-HyunORCID,Park So-YoungORCID,Park YongdooORCID

Abstract

Metabolic flexibility includes the ability to perform fat and carbohydrate oxidation, as well as oxidative capacity, which is associated with mitochondrial function, energetic contributions, and physical health and performance. During a session of graded incremental exercise testing (GIET), we investigated metabolic flexibility, the contributions of three energy systems, and performances of individuals with different metabolic characteristics. Fifteen general population (GP; n = 15, male n = 7, female n = 8) and 15 national-level half-marathon and triathlon athletes (A; n = 15, male n = 7, female n = 8) participated in this study. During GIET, heart rate (HR), oxygen uptake (V˙O2mean and V˙CO2mean), metabolic equivalents (METs) in V˙O2mean, and blood glucose and lactate concentrations (La−) were measured. Furthermore, jogging/running speeds (S) at specific La−, fat and carbohydrate oxidations (FATox and CHOox), and energetic contributions (oxidative; WOxi, glycolytic; WGly, and phosphagen; WPCr) were calculated. The percentages of HRmax, relative V˙O2mean, V˙CO2mean, and METs in V˙O2mean were all lower in A than they were in GP. FATox values were lower in GP than in A, while CHOox and La− were higher in GP than in A. Negative correlations between La− and FATox were also observed in both groups. Contributions of WOxi, WGly, and WPCr were higher in GP than in A during GIET. Moreover, values of WGly, and WPCr were significantly lower and higher, respectively, in male GP than in female GP. Furthermore, S at specific La− were higher in A than in GP. It is suggested that an individualized low-intensity recovery exercise program be established, to achieve increased metabolic flexibility and oxidative capacity (aerobic base), such as public health improvements and a greater volume of higher exercise intensities; this is the type of exercise that elite athletes worldwide mostly perform during their training period and progression. This may prevent cardiac/metabolic diseases in GP.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3