Supplementation of Methyl-Donor Nutrients to a High-Fat, High-Sucrose Diet during Pregnancy and Lactation Normalizes Circulating 25-Dihydroxycholecalciferol Levels and Alleviates Inflammation in Offspring

Author:

Teoh Chin May,Cooper Analynn,Renteria Karisa M.,Lane Michelle,Zhu JieORCID,Koh Gar YeeORCID

Abstract

A Western-style diet that is high in fat and sucrose has been shown to alter DNA methylation and epigenetically modify genes related to health risk in offspring. Here, we investigated the effect of a methyl-donor nutrient (MS) supplemented to a high-fat, high-sucrose (HFS) diet during pregnancy and lactation on vitamin D (VD) status and inflammatory response in offspring. After mating, 10-week-old female Sprague-Dawley (SD) rats (n = 10/group) were randomly assigned to one of the four dietary groups during pregnancy and lactation: (1) control diet (CON), (2) CON with MS (CON-MS), (3) HFS, and (4) HFS with MS (HFS-MS). Weanling offspring (three weeks old) were euthanized and sacrificed (n = 8–10/sex/group). The remaining offspring (n = 10/sex/group) were randomly assigned to either a CON or an HFS diet for 12 weeks and sacrificed at 15 weeks of age. Our results indicated that prenatal MS supplementation, but not postnatal diet, restored low vitamin D status and suppressed elevation of proinflammatory cytokine induced by maternal HFS in the offspring. Furthermore, both prenatal and postnatal diets modulated the abundance of Lactobacillus spp. and Bacteroides spp. in the offspring, a shift that was independent of vitamin D status. Collectively, our data support a role for MS in restoring the perturbation of VD status and normalizing maternal HFS-induced inflammation in the offspring. Further investigation is warranted to elucidate the methylation status of VD metabolism-related pathways in the offspring, as well as the immunomodulatory role of vitamin D during the progression of obesity.

Funder

Texas State University indirect cost return funds

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3