MetaboListem and TABoLiSTM: Two Deep Learning Algorithms for Metabolite Named Entity Recognition

Author:

Yeung Cheng S.,Beck Tim,Posma Joram M.ORCID

Abstract

Reviewing the metabolomics literature is becoming increasingly difficult because of the rapid expansion of relevant journal literature. Text-mining technologies are therefore needed to facilitate more efficient literature reviews. Here we contribute a standardised corpus of full-text publications from metabolomics studies and describe the development of two metabolite named entity recognition (NER) methods. These methods are based on Bidirectional Long Short-Term Memory (BiLSTM) networks and each incorporate different transfer learning techniques (for tokenisation and word embedding). Our first model (MetaboListem) follows prior methodology using GloVe word embeddings. Our second model exploits BERT and BioBERT for embedding and is named TABoLiSTM (Transformer-Affixed BiLSTM). The methods are trained on a novel corpus annotated using rule-based methods, and evaluated on manually annotated metabolomics articles. MetaboListem (F1-score 0.890, precision 0.892, recall 0.888) and TABoLiSTM (BioBERT version: F1-score 0.909, precision 0.926, recall 0.893) have achieved state-of-the-art performance on metabolite NER. A training corpus with full-text sentences from >1000 full-text Open Access metabolomics publications with 105,335 annotated metabolites was created, as well as a manually annotated test corpus (19,138 annotations). This work demonstrates that deep learning algorithms are capable of identifying metabolite names accurately and efficiently in text. The proposed corpus and NER algorithms can be used for metabolomics text-mining tasks such as information retrieval, document classification and literature-based discovery and are available from the omicsNLP GitHub repository.

Funder

Medical Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3