Signal-to-Noise Ratio Enhancement of Single-Voxel In Vivo 31P and 1H Magnetic Resonance Spectroscopy in Mice Brain Data Using Low-Rank Denoising

Author:

Jeon Yeong-Jae,Park Shin-Eui,Chang Keun-AORCID,Baek Hyeon-Man

Abstract

Magnetic resonance spectroscopy (MRS) is a noninvasive technique for measuring metabolite concentration. It can be used for preclinical small animal brain studies using rodents to provide information about neurodegenerative diseases and metabolic disorders. However, data acquisition from small volumes in a limited scan time is technically challenging due to its inherently low sensitivity. To mitigate this problem, this study investigated the feasibility of a low-rank denoising method in enhancing the quality of single voxel multinuclei (31P and 1H) MRS data at 9.4 T. Performance was evaluated using in vivo MRS data from a normal mouse brain (31P and 1H) and stroke mouse model (1H) by comparison with signal-to-noise ratios (SNRs), Cramer-Rao lower bounds (CRLBs), and metabolite concentrations of a linear combination of model analysis results. In 31P MRS data, low-rank denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared with the original data. In 1H MRS data, the method also improved the SNRs, CRLBs, but it performed better for 31P MRS data with relatively simpler patterns compared to the 1H MRS data. Therefore, we suggest that the low-rank denoising method can improve spectra SNR and metabolite quantification uncertainty in single-voxel in vivo 31P and 1H MRS data, and it might be more effective for 31P MRS data. The main contribution of this study is that we demonstrated the effectiveness of the low-rank denoising method on small-volume single-voxel MRS data. We anticipate that our results will be useful for the precise quantification of low-concentration metabolites, further reducing data acquisition voxel size, and scan time in preclinical MRS studies.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3