Maternal High-Fat Diet Programs White and Brown Adipose Tissues In Vivo in Mice, with Different Metabolic and Microbiota Patterns in Obesity-Susceptible or Obesity-Resistant Offspring

Author:

Guzzardi Maria AngelaORCID,Collado Maria CarmenORCID,Panetta DanieleORCID,Tripodi Maria,Iozzo Patricia

Abstract

Maternal obesity causes metabolic dysfunction in the offspring, including dysbiosis, overeating, obesity, and type 2 diabetes. Early-life phases are fundamental for developing subcutaneous (SAT) and brown adipose tissues (BAT), handling energy excesses. Imaging of 18F-fluorodeoxyglucose by positron emission tomography (PET) and radiodensity by computerized tomography (CT) allows assessing adipose tissue (AT) whitening and browning in vivo and the underlying metabolic efficiency. Our aim was to examine these in vivo traits in SAT and BAT concerning gut microbiota composition in 1- and 6-month-old mice born to normal (NDoff) and high-fat diet-fed dams (HFDoff), accounting for body weight responses. We found low radiodensity (high lipids) in HFDoff SAT at 1 month, relating to an increased abundance of Dorea genus in the caecum and activation of the fatty acid biosynthetic pathway. Instead, low BAT radiodensity and glucose uptake were seen in adult HFDoff. Glucose was shifted in favor of BAT at 1 month and SAT at 6 months. In adults, unclassified Enterococcaceae and Rikenellaceae, and Bacillus genera were negatively related to BAT, whereas unclassified Clostridiales genera were related to SAT metabolism. Stratification of HFDoff based on weight-response, namely maternal induced obesity (MIO-HFDoff) or obesity-resistant (MIOR-HFDoff), showed sex dimorphism. Both subgroups were hyperphagic, but only obese mice had hyper-leptinemia and hyper-resistinemia, together with BAT dysfunction, whereas non-obese HFDoff had hyperglycemia and SAT hypermetabolism. In the caecum, unclassified Rikenellaceae (10-fold enrichment in MIO-HFDoff) and Clostridiales genera (4-fold deficiency in MIOR-HFDoff) were important discriminators of these two phenotypes. In conclusion, SAT whitening is an early abnormality in the offspring of HFD dams. In adult life, maternal HFD and the induced excessive food intake translates into a dimorphic phenotype involving SAT, BAT, and microbiota distinctively, reflecting maternal diet*sex interaction. This helps explain inter-individual variability in fetal programming and the higher rates of type 2 diabetes observed in adult women born to obese mothers, supporting personalized risk assessment, prevention, and treatment.

Funder

European Commission

Ministry of Education, University, Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3