Comparative Metabolite Profiling of Wheat Cultivars (Triticum aestivum) Reveals Signatory Markers for Resistance and Susceptibility to Stripe Rust and Aluminium (Al3+) Toxicity

Author:

Mashabela Manamele D.ORCID,Piater Lizelle A.ORCID,Steenkamp Paul A.ORCID,Dubery Ian A.ORCID,Tugizimana FideleORCID,Mhlongo Msizi I.

Abstract

Plants continuously produce essential metabolites that regulate their growth and development. The enrichment of specific metabolites determines plant interactions with the immediate environment, and some metabolites become critical in defence responses against biotic and abiotic stresses. Here, an untargeted UHPLC-qTOF-MS approach was employed to profile metabolites of wheat cultivars resistant or susceptible to the pathogen Puccinia striiformis f. sp. tritici (Pst) and Aluminium (Al3+) toxicity. Multivariate statistical analysis (MVDA) tools, viz. principal component analysis (PCA) and hierarchical cluster analysis (HiCA) were used to qualify the correlation between the identified metabolites and the designated traits. A total of 100 metabolites were identified from primary and secondary metabolisms, including phenolic compounds, such as flavonoid glycosides and hydroxycinnamic acid (HCA) derivatives, fatty acids, amino acids, and organic acids. All metabolites were significantly variable among the five wheat cultivars. The Pst susceptible cultivars demonstrated elevated concentrations of HCAs compared to their resistant counterparts. In contrast, ‘Koonap’ displayed higher levels of flavonoid glycosides, which could point to its resistant phenotype to Pst and Al3+ toxicity. The data provides an insight into the metabolomic profiles and thus the genetic background of Pst- and Al3+-resistant and susceptible wheat varieties. This study demonstrates the prospects of applied metabolomics for chemotaxonomic classification, phenotyping, and potential use in plant breeding and crop improvement.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3