Longitudinal Metabolomic Analysis Reveals Gut Microbial-Derived Metabolites Related to Formula Feeding and Milk Sensitization Development in Infancy

Author:

Tang Ching-Min,Lin Gigin,Chiang Meng-Han,Yeh Kuo-Wei,Huang Jing-Long,Su Kuan-WenORCID,Tsai Ming-HanORCID,Hua Man-Chin,Liao Sui-Ling,Lai Shen-Hao,Chiu Chih-YungORCID

Abstract

Early exposure to formula milk increases the likelihood of cow’s milk sensitization and food allergies in the later childhood. However, the underlying mechanisms are multifactorial and unclear. Fifty-five children from a follow-up birth cohort study were grouped into exclusive breastfeeding (EBF, n = 33) and formula feeding (EFF, n = 22) in the first six months of life. Urinary metabolites were longitudinally assessed and analyzed at 6 months, 1, and 2 years of age using 1H-nuclear magnetic resonance (NMR) spectroscopy. Integrated analysis of metabolic profiling associated with formula feeding and milk sensitization related to IgE reactions was also investigated. Twenty-two metabolites were significantly obtained in the EFF set at age 0.5, whereas nine metabolites were predominantly obtained in the milk sensitization set at age 1. A subsequent analysis of metabolic change from 6 months to age 1 identified eight metabolites, including 3-methyl-2-oxovaleric acid, glutarate, lysine, N-phenylacetylglycine, N,N-dimethylglycine, 3-indoxysulfate, 2-oxoglutaric acid, and pantothenate associated with formula feeding and milk sensitization with same trend variation. Among them, 3-indoxysulfate, N-phenylacetylglycine, and N,N-dimethylglycine were gut microbial-derived without IgE association. By contrast, 3-methyl-2-oxovaleric acid, glutarate, and lysine were IgE related associated with formula feeding contributing to milk sensitization (p < 0.05). Longitudinal urinary metabolomic analysis provides molecular insight into the mechanism of formula feeding associated with milk sensitization. Gut microbial-derived metabolites associated with formula feeding and IgE associated metabolites related to branched-chain amino acid metabolism play roles in developing sensitization and allergic symptoms in response to formula feeding.

Funder

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3