Imputation of Missing Values for Multi-Biospecimen Metabolomics Studies: Bias and Effects on Statistical Validity

Author:

Wilson Machelle D.ORCID,Ponzini Matthew D.,Taylor Sandra L.,Kim Kyoungmi

Abstract

The analysis of high-throughput metabolomics mass spectrometry data across multiple biological sample types (biospecimens) poses challenges due to missing data. During differential abundance analysis, dropping samples with missing values can lead to severe loss of data as well as biased results in group comparisons and effect size estimates. However, the imputation of missing data (the process of replacing missing data with estimated values such as a mean) may compromise the inherent intra-subject correlation of a metabolite across multiple biospecimens from the same subject, which in turn may compromise the efficacy of the statistical analysis of differential metabolites in biomarker discovery. We investigated imputation strategies when considering multiple biospecimens from the same subject. We compared a novel, but simple, approach that consists of combining the two biospecimen data matrices (rows and columns of subjects and metabolites) and imputes the two biospecimen data matrices together to an approach that imputes each biospecimen data matrix separately. We then compared the bias in the estimation of the intra-subject multi-specimen correlation and its effects on the validity of statistical significance tests between two approaches. The combined approach to multi-biospecimen studies has not been evaluated previously even though it is intuitive and easy to implement. We examine these two approaches for five imputation methods: random forest, k nearest neighbor, expectation-maximization with bootstrap, quantile regression, and half the minimum observed value. Combining the biospecimen data matrices for imputation did not greatly increase efficacy in conserving the correlation structure or improving accuracy in the statistical conclusions for most of the methods examined. Random forest tended to outperform the other methods in all performance metrics, except specificity.

Funder

National Institutes of Health

US National Institute Environmental Health Sciences

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3