Effect of Breastmilk Microbiota and Sialylated Oligosaccharides on the Colonization of Infant Gut Microbial Community and Fecal Metabolome

Author:

Ding Juan,Ouyang Runze,Zheng Sijia,Wang Yanfeng,Huang Yan,Ma Xiao,Zou Yuxin,Chen Rong,Zhuo Zhihong,Li Zhen,Xin Qi,Zhou Lina,Mei Surong,Yan Jingyu,Lu Xin,Ren Zhigang,Liu XinyuORCID,Xu GuowangORCID

Abstract

The complex microbiota and sialylated oligosaccharides in breastmilk are important bioactive components that affect the gut microbiota. However, the effect of breastmilk microbiota and sialylated oligosaccharides on the gut microbiota during the neonatal period has been largely overlooked. Here, 16S rRNA gene sequencing and metabolomics analysis were applied to the breastmilk and feces of 69 newborns to clarify the link between breastmilk components and the newborn gut. Results showed that Staphylococcus, Enterococcus, and Bacteroides were commonly shared and positively correlated between breastmilk and the neonatal intestine and they were the main bacteria of breastmilk that interacted with the newborn fecal metabolome. Breastmilk Staphylococcus mainly interacted with amino acids, whereas Bacteroides was involved in the tryptophan, nucleotide, and vitamin metabolism. Breastmilk sialylated oligosaccharides were related to Bacteroides and amino acids of the newborn fecal metabolites. Moreover, Bacteroides was related to the interaction between breastmilk 3′-sialyllactose and newborn fecal metabolites in the mediation effect models. Finally, we pointed out that breastmilk Bacteroides was important in the milk–gut interaction, and it was negatively associated with waist circumference in infants aged 1 year. Our study provides a scientific basis for understanding the role of breastmilk in the development of newborn gut microbiota and metabolome.

Funder

Science and Research from Dalian Institute of Chemical Physics, Chinese Academy of Sciences

the Youth Innovation Promotion Association of Chinese Academy of Sciences

Youth Science and Technology Star Project Support Program

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3