Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia

Author:

Darenskaya MarinaORCID,Chugunova Elena,Kolesnikov SergeyORCID,Semenova Natalya,Michalevich Isay,Nikitina Olga,Lesnaya Anastasya,Kolesnikova Lyubov

Abstract

Oxidative stress plays a leading role in the pathogenesis of diabetic nephropathy. However, many aspects of oxidative stress reactions in the initial stages of this disease are not fully understood. The men cohort is of particular interest because of the severe effects of diabetes on their urogenital system. The aim of this study is to assess the intensity of lipids, proteins, DNA oxidative damage, blood antioxidant defense enzymatic, and activity of non-enzymatic components in men with type 1 diabetes mellitus (T1DM) in the early stages of diabetic nephropathy using receiver operator characteristic (ROC) analysis. This study included eighty-nine reproductive-age men in the initial stages of diabetic nephropathy (DN) and thirty-nine age- and sex-matched individuals not suffering from glycemic disorders. The DN patients were divided into two subgroups: stage 1 patients (urinary albumin < 30 mg/day and albumin/creatinine ratio < 3 mg/mmol (n = 45)) and stage 2 patients (urinary albumin 30–300 mg/day and albumin/creatinine ratio 3–30 mg/mmol (n = 44)). Levels of oxidative damage products (conjugated dienes (CDs), thiobarbituric acid reactants (TBARs), methylglyoxal (MGO), and 8-hydroxy-2’-deoxyguanosine (8-OHdG)) and antioxidants (glutathione peroxidase (GPx), glutathione S-transferases π (GSTp), glutathione reductase (GR), copper and zinc-containing superoxide dismutase 1 (SOD-1), total antioxidant status (TAS), α-tocopherol, retinol, reduced glutathione (GSH), and oxidative glutathione (GSSG)) were estimated in plasma and erythrocytes. Oxidative damage to cellular structures (higher values of median CDs (1.68 µmol/L; p = 0.003), MGO (3.38 mg/L; p < 0.001) in the stage 1 group and CDs (2.28 µmol/L; p < 0.0001), MGO (3.52 mg/L; p < 0.001), 8-OHdG (19.44 ng/mL; p = 0.010) in the stage 2 group) and changes in the antioxidant defense system (lower values of TAS (1.14 units; p = 0.011), α-tocopherol (12.17 µmol/L; p = 0.009), GPx (1099 units; p = 0.0003) and elevated levels of retinol (1.35 µmol/L; p < 0.001) in the group with stage 1; lower values of α-tocopherol (12.65 µmol/L; p = 0.033), GPx (1029.7 units; p = 0.0001) and increased levels of GR (292.75 units; p < 0.001), GSH (2.54 mmol/L; p = 0.010), GSSG (2.31 mmol/L; p < 0.0001), and retinol (0.81 µmol/L; p = 0.005) in the stage 2 group) were identified. The ROC analysis established that the following indicators have the highest diagnostic significance for stage 1 diabetic nephropathy: CDs (AUC 0.755; p < 0.0001), TBARs (AUC 0.748; p = 0.0001), MGO (AUC 0.720; p = 0.0033), retinol (AUC 0.932; p < 0.0001), GPx (AUC 0.741; p = 0.0004), α-tocopherol (AUC 0.683; p = 0.0071), and TAS (AUC 0.686; p = 0.0052) and the following for stage 2 diabetic nephropathy: CDs (AUC 0.714; p = 0.001), TBARs (AUC 0.708; p = 0.001), 8-OHdG (AUC 0.658; p = 0.0232), GSSG (AUC 0.714; p = 0.001), and GSH (AUC 0.667; p = 0.0108). We conclude that changes in indicators of damage to lipids, proteins, DNA, and the insufficiency of antioxidant defense factors already manifest in the first stage of diabetic nephropathy in men with T1DM. The ROC established which parameters have the greatest diagnostic significance for stages 1 and 2 of diabetic nephropathy, which may be utilized as additional criteria for defining men with T1DM as being in the risk group for the development of initial manifestations of the disease and thus allow for substantiating appropriate approaches to optimize preventive measures.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3