Early Life Polychlorinated Biphenyl 126 Exposure Disrupts Gut Microbiota and Metabolic Homeostasis in Mice Fed with High-Fat Diet in Adulthood

Author:

Tian YuanORCID,Rimal Bipin,Gui Wei,Koo ImhoiORCID,Smith Philip B.,Yokoyama ShigetoshiORCID,Patterson Andrew D.ORCID

Abstract

Evidence supports the potential influence of persistent organic pollutants (POPs) on the pathogenesis and progression of obesity and diabetes. Diet-toxicant interactions appear to be important in diet-induced obesity/diabetes; however, the factors influencing this interaction, especially the early life environmental exposure, are unclear. Herein, we investigated the metabolic effects following early life five-day exposure (24 μg/kg body weight per day) to 3,3′,4,4′,5-pentacholorobiphenyl (PCB 126) at four months after exposure in mice fed with control (CTRL) or high-fat diet (HFD). Activation of aryl hydrocarbon receptor (AHR) signaling as well as higher levels of liver nucleotides were observed at 4 months after PCB 126 exposure in mice, independent of diet status. Inflammatory responses including higher levels of serum cytokines and adipose inflammatory gene expression caused by early life PCB 126 were observed only in HFD-fed mice in adulthood. Notably, early life PCB 126 exposure worsened HFD-induced impaired glucose homeostasis characterized by glucose intolerance and elevated gluconeogenesis and tricarboxylic acid (TCA) cycle flux without worsening the effects of HFD related to adiposity in adulthood. Furthermore, early life PCB 126 exposure resulted in diet-dependent changes in bacterial community structure and function later in life, as indicated by metagenomic and metabolomic analyses. These data contribute to a more comprehensive understanding of the interactions between diet and early life environmental chemical exposure.

Funder

National Institutes of Health

the USDA National Institute of Food and Federal Appropriations

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3