Comparative Analysis of Untargeted Metabolomics in Tolerant and Sensitive Genotypes of Common Bean (Phaseolus vulgaris L.) Seeds Exposed to Terminal Drought Stress

Author:

Subramani Mayavan,Urrea Carlos A.,Kalavacharla Venu

Abstract

Many environmental stresses can affect the accumulation of metabolites in plants, including drought. In the present study, we found a great deal of variability in the seed metabolic profiles of the tolerant (Matterhorn, SB-DT2 and SB-DT3) common bean genotypes in comparison to the sensitive genotypes (Sawtooth, Merlot and Stampede) using ultrahigh performance liquid chromatography−tandem mass spectrometry (UPLC-MS). The genotypes were grown in the field and subjected to drought stress after flowering (terminal drought stress). We aimed to investigate the accumulation of genotype-specific metabolites and related pathways under terminal drought stress by comparing tolerant and sensitive genotypes within a race. A total of 26 potential metabolites were identified across genotype comparisons. Significant metabolic pathways, including monobactam biosynthesis, flavone and flavonol biosynthesis, pentose phosphate pathway, C5-branched dibasic acid metabolism, cysteine and methionine metabolism, vitamin B6 metabolism and flavonoid biosynthesis, were derived from the enriched metabolites. Many of these metabolic pathways were specific and varied with genotype comparisons. SB-DT2 vs. stampede revealed more significant metabolites and metabolic pathways compared to Matterhorn vs. Sawtooth and SB-DT3 vs. Merlot under terminal drought stress. Our study provides useful information regarding the metabolite profiles of seeds and their related pathways in comparisons of tolerant and sensitive common bean genotypes under terminal drought conditions. Further research, including transcriptomic and proteomic analyses, may contribute to a better understanding of molecular mechanisms and nutritional differences among seeds of common bean genotypes grown under terminal drought conditions.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3