Impact of Diet on Gut Microbiota Composition and Microbiota-Associated Functions in Heart Failure: A Systematic Review of In Vivo Animal Studies

Author:

Palombaro Marta,Raoul PaulineORCID,Cintoni MarcoORCID,Rinninella EmanueleORCID,Pulcini Gabriele,Aspromonte Nadia,Ianiro Gianluca,Gasbarrini Antonio,Mele Maria CristinaORCID

Abstract

Heart failure (HF) represents a cardiovascular disease with high mortality and morbidity. The latest evidence shows that changes in the composition of the gut microbiota might play a pivotal role in the prevention and management of HF. This systematic review aims at assessing the potential associations between the diet, gut microbiota, and derived metabolites with the outcomes of HF. A systematic literature search was performed up to July 2022 on the PubMed, Web of Science, and Scopus databases. The PRISMA guidelines were followed when possible. The risk of bias was assessed with the SYRCLE and ARRIVE tools. A total of nine pre-clinical studies on animal models, with considerable heterogeneity in dietary interventions, were included. High-fiber/prebiotic diets (n = 4) and a diet rich in polyphenols (n = 1) modified the gut microbiota composition and increased microbial metabolites’ activities, linked with an improvement in HF outcomes, such as a reduction in systolic blood pressure, cardiac hypertrophy, and left ventricular thickness. A high-fat diet (n = 2) or a diet rich in choline (n = 2) induced an increase in TMAO and indole derivative production associated with a decrease in cardiac function, systemic endotoxemia, and inflammation and an increase in cardiac fibrosis and cardiac remodeling. Although results are retrieved from animal studies, this systematic review shows the key role of the diet—especially a high-fiber and prebiotic diet—on gut microbial metabolites in improving HF outcomes. Further studies on human cohorts are needed to identify personalized therapeutic dietary interventions to improve cardiometabolic health.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3