Effect of Denoising and Deblurring 18F-Fluorodeoxyglucose Positron Emission Tomography Images on a Deep Learning Model’s Classification Performance for Alzheimer’s Disease

Author:

Lee Min-HeeORCID,Yun Chang-SooORCID,Kim Kyuseok,Lee Youngjin

Abstract

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disease. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is widely used to predict AD using a deep learning model. However, the effects of noise and blurring on 18F-FDG PET images were not considered. The performance of a classification model trained using raw, deblurred (by the fast total variation deblurring method), or denoised (by the median modified Wiener filter) 18F-FDG PET images without or with cropping around the limbic system area using a 3D deep convolutional neural network was investigated. The classification model trained using denoised whole-brain 18F-FDG PET images achieved classification performance (0.75/0.65/0.79/0.39 for sensitivity/specificity/F1-score/Matthews correlation coefficient (MCC), respectively) higher than that with raw and deblurred 18F-FDG PET images. The classification model trained using cropped raw 18F-FDG PET images achieved higher performance (0.78/0.63/0.81/0.40 for sensitivity/specificity/F1-score/MCC) than the whole-brain 18F-FDG PET images (0.72/0.32/0.71/0.10 for sensitivity/specificity/F1-score/MCC, respectively). The 18F-FDG PET image deblurring and cropping (0.89/0.67/0.88/0.57 for sensitivity/specificity/F1-score/MCC) procedures were the most helpful for improving performance. For this model, the right middle frontal, middle temporal, insula, and hippocampus areas were the most predictive of AD using the class activation map. Our findings demonstrate that 18F-FDG PET image preprocessing and cropping improves the explainability and potential clinical applicability of deep learning models.

Funder

National Foundation of Korea

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Effects of Image Restoration Algorithms on Image Quality in Digital Image Processing;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. SEBR: Scharr Edge-Based Regularization Method for Blind Image Deblurring;Arabian Journal for Science and Engineering;2023-06-22

3. Performance evaluation of 3D median modified Wiener filter in brain T1-weighted magnetic resonance imaging;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3