Abstract
Salivary gland tumors are relatively uncommon neoplasms that represent less than 5% of head and neck tumors, and about 90% are in the parotid gland. The wide variety of histologies and tumor characteristics makes diagnosis and treatment challenging. In the present study, Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to discriminate the pathological regions of patient-derived biopsies of parotid neoplasms by metabolomic and lipidomic profiles. Fresh frozen parotid tissues were analyzed by MALDI time-of-flight (TOF) MSI, both in positive and negative ionization modes, and additional MALDI-Fourier-transform ion cyclotron resonance (FT-ICR) MSI was carried out for metabolite annotation. MALDI-TOF-MSI spatial segmentation maps with different molecular signatures were compared with the histologic annotation. To maximize the information related to specific alterations between the pathological and healthy tissues, unsupervised (principal component analysis, PCA) and supervised (partial least squares-discriminant analysis, PLS-DA) multivariate analyses were performed presenting a 95.00% accuracy in cross-validation. Glycerophospholipids significantly increased in tumor tissues, while sphingomyelins and triacylglycerols, key players in the signaling pathway and energy production, were sensibly reduced. In addition, a significant increase of amino acids and nucleotide intermediates, consistent with the bioenergetics request of tumor cells, was observed. These results underline the potential of MALDI-MSI as a complementary diagnostic tool to improve the specificity of diagnosis and monitoring of pharmacological therapies.
Funder
Ministry of Education, Universities and Research
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献