Author:
Sheng Wei,Sun Runbin,Zhang Ran,Xu Peng,Wang Youmei,Xu Hui,Aa Jiye,Wang Guangji,Xie Yuan
Abstract
Methamphetamine (METH) abuse has become a global public health and safety problem. More information is needed to identify the time of drug abuse. In this study, methamphetamine was administered to male C57BL/6J mice with increasing doses from 5 to 30 mg kg−1 (once a day, i.p.) for 20 days. Serum and urine samples were collected for metabolomics studies using gas chromatography–mass spectrometry (GC-MS). Six machine learning models were used to infer the time of drug abuse and the best model was selected to predict administration time preliminarily. The metabolic changes caused by methamphetamine were explored. As results, the metabolic patterns of methamphetamine exposure mice were quite different from the control group and changed over time. Specifically, serum metabolomics showed enhanced amino acid metabolism and increased fatty acid consumption, while urine metabolomics showed slowed metabolism of the tricarboxylic acid (TCA) cycle, increased organic acid excretion, and abnormal purine metabolism. Phenylalanine in serum and glutamine in urine increased, while palmitic acid, 5-HT, and monopalmitin in serum and gamma-aminobutyric acid in urine decreased significantly. Among the six machine learning models, the random forest model was the best to predict the exposure time (serum: MAE = 1.482, RMSE = 1.69, R squared = 0.981; urine: MAE = 2.369, RMSE = 1.926, R squared = 0.946). The potential biomarker set containing four metabolites in the serum (palmitic acid, 5-hydroxytryptamine, monopalmitin, and phenylalanine) facilitated the identification of methamphetamine exposure. The random forest model helped predict the methamphetamine exposure time based on these potential biomarkers.
Funder
the National Natural Science Foundation of China
the Six Talent Peaks Project in Jiangsu Province
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献