Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction, impaired communication, and repetitive behaviors. ASD presents a 3:1 ratio of diagnosed boys and girls, raising the question regarding sexual dimorphic mechanisms underlying ASD symptoms, and their molecular basis. Here, we performed in vivo proton magnetic resonance spectroscopy in juvenile male and female Tsc2+/− mice (an established genetic animal model of ASD). Moreover, behavior and ultrasonic vocalizations during social and repetitive tasks were analyzed. We found significant sexual dimorphisms in the levels of metabolites in the hippocampus and prefrontal cortex. Further, we observed that female mutant animals had a differential social behavior and presented an increase in repetitive behavior. Importantly, while mutant females displayed a more simplified communication during social tasks, mutant males exhibited a similar less complex vocal repertoire but during repetitive tasks. These results hint toward sex-dependent alterations in molecular and metabolic pathways, which can lead to the sexual dimorphic behaviors and communication observed in social and repetitive environments.
Funder
Luso American Development Foundation
Fundação para a Ciência e Tecnologia
H2020
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献