Comparative Transcriptome and Phytochemical Analysis Provides Insight into Triterpene Saponin Biosynthesis in Seeds and Flowers of the Tea Plant (Camellia sinensis)

Author:

Chen CongORCID,Zhu Huanqing,Kang Jiaxin,Warusawitharana Hasitha Kalhari,Chen Shuna,Wang Kaixi,Yu Fei,Wu Yuanyuan,He Puming,Tu Youying,Li BoORCID

Abstract

Triterpene saponins exhibit various biological and pharmacological activities. However, the knowledge on saponin biosynthesis in tea plants (Camellia sinensis L.) is still limited. In this work, tea flower and seed samples at different developmental stages and leaves were collected and analyzed with UPLC-PDA-MS and RNA sequencing for saponin determination and transcriptome comparison. The saponin content reached around 19% in the freshly mature seeds and 7% in the green flower buds, and decreased with the fruit ripeness and flower blooming. Almost no saponins were detected in leaf samples. PCA and KEGG analysis suggested that the gene expression pattern and secondary metabolism in TF1 and TS2 vs. leaf samples were significantly different. Weighted gene coexpression network analysis (WGCNA) uncovered two modules related to saponin content. The mevalonate (MVA) instead of 2-C-methyl-d-erythritol-4-phospate (MEP) pathway was responsible for saponin accumulation in tea plants, and 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), diphosphomevalonate decarboxylase (MVD) and isopentenyl diphosphate isomerase (IDI) may be the key enzymes involved in saponin biosynthesis in tea seeds and flowers. Moreover, ten transcription factors (TFs) were predicted to regulate saponin biosynthesis in the tea plant. Taken together, our study provides a global insight into the saponin biosynthesis and accumulation in the tea plant.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Science and Technology Innovation Platform Project of Fujian Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3