Clinical Perspectives for 18F-FDG PET Imaging in Pediatric Oncology: Μetabolic Tumor Volume and Radiomics

Author:

Lyra Vassiliki,Chatziioannou SofiaORCID,Kallergi Maria

Abstract

Pediatric cancer, although rare, requires the most optimized treatment approach to obtain high survival rates and minimize serious long-term side effects in early adulthood. 18F-FDG PET/CT is most helpful and widely used in staging, recurrence detection, and response assessment in pediatric oncology. The well-known 18F-FDG PET metabolic indices of metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG) have already revealed an independent significant prognostic value for survival in oncologic patients, although the corresponding cut-off values remain study-dependent and not validated for use in clinical practice. Advanced tumor “radiomic” analysis sheds new light into these indices. Numerous patterns of texture 18F-FDG uptake features can be extracted from segmented PET tumor images due to new powerful computational systems supporting complex “deep learning” algorithms. This high number of “quantitative” tumor imaging data, although not decrypted in their majority and once standardized for the different imaging systems and segmentation methods, could be used for the development of new “clinical” models for specific cancer types and, more interestingly, for specific age groups. In addition, data from novel techniques of tumor genome analysis could reveal new genes as biomarkers for prognosis and/or targeted therapies in childhood malignancies. Therefore, this ever-growing information of “radiogenomics”, in which the underlying tumor “genetic profile” could be expressed in the tumor-imaging signature of “radiomics”, possibly represents the next model for precision medicine in pediatric cancer management. This paper reviews 18F-FDG PET image segmentation methods as applied to pediatric sarcomas and lymphomas and summarizes reported findings on the values of metabolic and radiomic features in the assessment of these pediatric tumors.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3