The Impact of Maternal Folates on Brain Development and Function after Birth

Author:

Virdi Sapna,Jadavji Nafisa M.ORCID

Abstract

Folate is vital for biological processes within the body, including DNA synthesis, DNA repair, and methylation reactions that metabolize homocysteine. The role of folate is particularly important in pregnancy, where there is rapid cellular and tissue growth. Maternal folate deficiencies secondary to inadequate dietary supplementation are known to produce defects in the neural tube and spinal cord, yet the exact mechanism of folate in neurodevelopment is unknown. The consequences of maternal folate deficiency on offspring brain development and function beyond gestation are not well defined. The objective of this review is to investigate the role of folate deficiency in offspring neurodevelopment, and the complications that arise post-gestation. This was accomplished through a comprehensive review of the data presented in both clinical and preclinical studies. Evidence supports that folate deficiency is associated with altered offspring neurodevelopment, including smaller total brain volume, altered cortical thickness and cerebral white matter, altered neurogenesis, and neuronal apoptosis. Some of these changes have been associated with altered brain function in offspring with memory, motor function, language skills, and psychological issues. This review of literature also presents potential mechanisms of folate deficiency in neurodevelopment with altered metabolism, neuroinflammation, epigenetic modification through DNA methylation, and a genetic deficiency in one-carbon metabolism.

Funder

American Heart Association

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference43 articles.

1. One-Carbon Metabolism in Health and Disease

2. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing

3. Folic Acid Supplementation and Pregnancy: More Than Just Neural Tube Defect Prevention;Greenberg;Rev. Obstet. Gynecol.,2011

4. Folic Acid;Merrell,2022

5. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3