Bioengineering of Escherichia coli Nissle 1917 for Production and Excretion of Spermidine, a Key Metabolite in Human Health

Author:

Caffaratti ClémentORCID,Plazy Caroline,Cunin Valérie,Toussaint Bertrand,Le Gouellec AudreyORCID

Abstract

Microbiota-derived metabolites have biological importance for their host. Spermidine, a metabolite described for its protective effect in age-related diseases, is now studied for its role in the resolution of inflammation and gut homeostasis. Strategies to modulate its production in the gastrointestinal tract are of interest to increase host spermidine intakes. Here, we show that metabolic engineering can be used to increase spermidine production by the probiotic Escherichia coli Nissle 1917 (EcN), used in humans. First, we found that increasing the expression of genes involved in polyamine biosynthesis, namely the S-adenosylmethionine synthase speD and the spermidine synthase speE, resulted in an increase in spermidine produced and excreted by our engineered bacteria. The major drawback of this first attempt was the production of acetylated forms of spermidine. Next, we propose to solve this problem by increasing the expression of the spermidine exporter system MdtI/MdtJ. This second strategy had a major impact on the spermidine profile found in the culture supernatant. Our results demonstrate, for the first time, the feasibility of rationally engineering bacterial probiotic strains to increase their ability to deliver the microbiota-derived metabolite, spermidine. This work illustrates how metabolomic and synthetic biology can be used to design and improve engineered Live Biotherapeutic Products that have the potential to be used in personalized medicine.

Funder

Vaincre la Mucoviscidose

Agence Nationale de la Recherche

Fondation Université Grenoble Alpes

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3